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Inner product, norm and angle

Standard inner product (Defintion)

Consider any vectors

U1 wq

V2 w2
v = . and w =

Un Wp,

in R™. Then the (standard) inner product of v and w is defined as
follows:

n
(v, W) := vjw + vows + . .. + vy w, = E VW .
k=1

In particular, the length ||v|| of v (also called norm) can be written as

follows:
vl = V{v,v).
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Inner product, norm and angle
Length, distance, angle

Consider any v, w € R™, let (-,-) be the standard inner product and let

|| - || denote the norm. Then
» ||v|| is the length of the vector v,
» ||v — w|| is the distance of v and w,

» the angle a between v and w is given by cos(a) = Héﬁfﬁv‘z,”
= ( (v.w)
Distance: w cos(a) = \\v‘\l\fﬁVWH

[[v-w]|

Pythagoras:

)P =t + 3
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Inner product, norm and angle

Exercise: Consider v := G) and w := <é)

(a) Determine the lengths of these vectors.
(b) Determine the angle between v and w.
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Inner product, norm and angle

Exercise: Consider v := G) and w = <é)
(c) Extra problem: For which value = € R is the distance between

wie(,,)

and v the smallest?
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Orthogonality
Orthogonality

Two vectors v, w in R? or R3 are orthogonal if and only if (v, w) = 0.

Example: Consider the vectors

in () (2) - 3

Then (vi,ve) = —2 and (v1,v3) =0. Hence, v; and v3 are
orthogonal. But v; and vy are not orthogonal.

not
orthogonal 1 1 orthogonal
v
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Orthogonality
Orthogonality
Two vectors v, w in R? or R3 are orthogonal if and only if (v, w) = 0.

Exercise: Consider a triangle with the corner points A := (—1,0, 1),
B:=(1,2,3) and C := (—2,2,0).

(i) Determine the vectors which lead from A to B, from A to C' and
from B to C.
(i) Check whether the given triangle is right-angled.
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Cross product
Cross product (Definition)

U1 wq
Let v= | vy | and w = [ wy | be vectors in R3. Then the cross
U3 w3

VW3 — V3Wwa
product of v and w is defined as follows: vxw := | vsw; — viws
V1W2 — V2wWq

Mnemonic
~~ write the vectors next to each other and
. below them add the first two components again
! 1~ delete the first row
%) () . . f . .
v vs determine the entries of v X w using the drawn crosses:
v W1

VW3 — V3W2
V XW = V3w — V1W3
V1W2 — V2w

v Wo
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Cross product
Cross product (Definition)

U1 wq

Let v= | vy | and w = [ wy | be vectors in R3. Then the cross
U3 w3

VW3 — V3Wwa

product of v and w is defined as follows: vxw := | vsw; — viws

V1W2 — V2W1

Important properties

(a) The cross product is only defined in R3!1!
(b) The vector v X w is orthogonal to v and w.

(c) The parallelogramm whose sides are given by v and w has an area

of size [[v x w|| .
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Exercise

3 0
(a) Calculate (—2) X (3) .
1 -3
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Exercise

(b) Consider the vectors

1 -1
vi=|2 and w:=1[ 0
1 2

(i) Find a vector which is orthogonal to v and w.
(ii) Determine the area of the parallelogramm whose sides are given by

the vectors v and w.
(iii) Find a vector which is orthogonal to v and w, and the length of

which is 1.
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Representing planes: parameter

Idea: A plane is determined uniquely if we know a point in the plane and

form

two vectors in the plane which have different directions.

Every point in the plane £
can be reached from P

by walking along multiples of
the vector a and b.

Hence, every point in

z9 can be represented by a position

vector of the form p+Aa4-pub

Parameter form of a plane

Every plane in R? can be described in the following form:

E={p+2Xa+ub: A\ peR} =p+Span(a,b),

where the points of E are represented by their position vectors.

representation is called parameter form.

This
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Example

In R? there exists a unique plane E which contains the points
R:=(1,1,1), S:=(1,3,2) and T := (—1,4,3). We determine a
parameter form of E.

1
point in the plane: p= |1 &

1 6
(0,0,0)

0
vectors in the plane:a= | 2| and b=

—_

A parameter form of F is:

1

1
+ Span

1
E= 1+)\2+u ) ANp€eR

1
1



Exercise

(a) Find a parameter form of the plane E which contains the following
points:

A:=(6,3,0), B:=(-3,10,2) and C:=(5,3,3).

(b) Find a parameter form of the plane F' which contains the point
D :=(9,1,9) and is parallel to the plane E.
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Representing planes: normal form
Idea: A plane E in R? is determined uniquely if we know a point in the
plane E and a vector (different from o) which is orthogonal to F.

Let n be a vector that
is orthogonal to E.

For every point V on E the
vector v-p between P and

V' is orthogonal to n.

*2 Hence, it holds that (v-p,n) =0
for every position vector v of a

point on E.
zy

Normal form of a plane in R3

Every plane E in R? can be described in the following form:
E={veR’: (v—p,n)=0} ={veR’: (v,n)=(p,n)}.

Here, p represents any point of E. The vector n # o is called normal
vector of F, i.e. it is orthogonal to E. This representation is called
normal form.
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Representing planes: coordinate form

Coordinate form of a plane

Every plane E in R? can be written in the form

x1

B = {x = (zz) eR3: a1xy + ass + asxs = d}
T3

with a1, a9, as3,d € R. This representation is called coordinate form.

The equation a1x1 + asxs + asrs = d describes which condition a point
(r1, 22, x3) must satisfy in order to part of the plane.

How to find a coordinate form

Let a plane E be given in normal form E = {v € R®: (v —p,n) =0}

then a coordinate equation can be found as follows:

Set v = (zi) and rearrange (v — p,n) = 0 to get an equation of the

xr3
form a1x1 + asxs + azrsz = d.
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Example

Example: In R? there exists a unique plane E which contains the points
R:=(1,1,1), S:=(1,3,2) and T := (—1,4,3).

We already know a parameter form of E:

{3 er) T

1 (]
(0,0,0)

For a normal form of E we need a point p and a normal vector n.
(Hint: Use cross product!)

1
# point: p = (1)
; 1

0 -2 1

normal vector: n= (2| x| 3 | = | -2

(0,0,0) l 2 4

A normal form of E is:

e - (0
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Example

Example: In R? there exists a unique plane E which contains the points
R:=(1,1,1), S:=(1,3,2) and T := (—1,4,3).

A normal form of E is:

- foew o= (). (3)) o}

To obtain a coordinate form, we substitute
1
VvV = T2
T3
into the equation of the normal form:

T 1 1
(Z)-() (2))=0 & 10-2041ma=3.
xrs3 1 4

Hence,
E = {(i;> ERSZ $1—2(E2+4IE3:3} .
z3
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Exercise
Find a coordinate form for each of the following planes:

2 0
VER3:<V— 01,11 >=0
1 2

el

(I) E1 :
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Overview: representations

parameter form:
E = {p+Aa+ub: \ pec R}

solution set of

a1 + apTy + azws = d

normal form:

E={veR®: (v-pm) =0}

n

(0,0,0)

(

a1
az
as

)=

,d=(pn)

T3

coordinate form:

\F = {(;; ) cR?: (L1x1+a2x2+a3x3:d}
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Hesse normal form and distance

Hesse normal form (Definition)

A normal form {v € R*: (v —p,n) =0} of a plane is called Hesse
normal form if the length of n equals 1. (||n| = 1)

Comment: A normal form can be transformed into a HNF by dividing the
given normal vector by its length.

Example: Consider the plane

B {vews (- () (3)) =0}

The given representation is a normal form, but not a Hesse normal form,
. 2
since the normal vector n = (—12) has length |n|| =3. A normal vector

. 2/3 .
of length 1 is %n = (712/{33> Hence, a Hesse normal form is

e={vem: (v- (.() -}
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Hesse normal form and distance

Hesse normal form (Definition)

A normal form {v € R*: (v —p,n) =0} of a plane is called Hesse
normal form if the length of n equals 1. (||n| = 1)

Distance point/plane

Let q be a point (position vector) and let E be a plane in
Hesse normal form E = {v € R*: (v —p,n) =0} then the distance
between q and F equals

|<q_p7n>| .

5
Exercise: Determine the distance between the point q := (§> and the

plane FE := {(é) —|—)\<§) —5—#(—}) D WINS R}.
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Positional relationship: line and plane

line intersects plane

line and plane are parallel

line is contained in plane
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Positional relationship: line and plane

Scheme: Positional relationship between line and plane

Let a line g be given in parameter form
g={p+ia: \eR}

and let a plane F be given in coordinate form.

Then one may put the 3 components of the general vector p + Aa of the
line g into the equation of the coordinate form of E. This results in an
equation with variable A for which there are three cases:

» the equation has no solution: then g and E have no common point.

» the equation has a unique solution A: then there is an intersection
point. lts position vector can be determined by substituting the
solution \ into the general vector p + \a.

» the equation has infinitely many solutions: g is contained in E.
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Positional relationship: line and plane

Example: We check whether the following line g and the following plane
E have an intersection point:

2 1 T
g= 3] +x|-2]:2eR and E = 22 | ER®: 229 —20 —2m5=1p.
0 1 x3

Solution: Every point of g has a position vector of the form

1 2 1 24+ A
wo | = -3 +x[-2] =[-3-2x].
T3 0 1 0+ A
Such a point lies in E if and only if it satisfies 221 — x5 — 223 = 1; hence:

2:(24N) = (=3-2\)—2-(0+A) = 1.

This equation has a unique solution: A = —3. Hence, there is an
intersection point. Its position vector is

(3) o (2)-(5)

Hence, the intersection point is S = (—1, 3, —3).
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Positional relationship: line and plane

Exercise: Determine the positional relationship of the following plane E
and the following line g:

T

E = xo | € R3: 3xq — dag + 209 = 12
T3
6 4

g:= 21 4+A| 5 ]: 2eR
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Positional relationship: two planes

planes intersect in a line

<@

L

planes are parallel

planes are identical
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Positional relationship: two planes

Scheme: positional relationship of two planes

Assume that two planes E; and F» are given by coordinate forms.
Then each common point (z1, z2, 23) must satisfy both coordinate
equations which leads to a LES of the form

a1x1 + asxo + azxrsy = d
blscl + b2£172 + b3$3 =e.
There are three cases:

» the LES has no solution: then E; and Es have no common point
(parallel).

» the LES has solutions, and both equations are not multiples of each
other: then there is an intersection line which equals the solution set
of the LES.

» the LES has solutions, and one equation is a multiple of the other
equation: then the planes are identical.

Exercises later
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Reminder: System of linear equations

System of linear equations

Let m,n € N. A system of linear equations (LES) in the variables
T1,T3,...,T, is of the form

a11T1 + a2 + ... + a1px, = b1

a21%1 aF a2 AF coo TR ALy = b2

Am1T1 + maXa + ... + ATy = by,

with a;; and b; being (usually real) numbers. An assignment of values
for x1,...,x, such that all equations are satisfied is called a solution of
this system of equations. Such a solution is written as a vector.
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LES: Looking at rows

1121 + a12%2 + ...+ A1pTn = by

a9121 + a29x2 + ... + aop X, = by

Am1X1 + oo + ... + Gn @y = b

R2

Equations describe
lines (R?),

planes (R?),
hyperplanes (R™)
Solution set is

their intersection

solving LES = finding intersection of hyperplanes
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LES: Looking at columns

a111 + a12Z9 +...+ ALy = b1

ag1x1 + ag2x9 + ...+ A2 Ty = bg

A1T1 + GmaXo + ... + QnTn = b,

U, rearrange

a1l aiz ain b1

az1 a2z azn bo
xr1 + . Lo+ ...+ . Ty =

Am1 aAm?2 Amn bm

solving LES = finding linear combination
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LES: Laziness

ail a2 ain b1

az1 a2z asnp bo
xr1 + . To+ ...+ . Ty = .

Am1 Am2 Amn bm

~U/ rearrange

aii a2 ce Ain x1 b1
az1 a2+ G2p T2 b2
Am1 Am?2 ce Amn Tn bm
Real matrix
Let m,n € N. Then
ail a2z - ain
az1 a22 T azn .
A= . ) . with every a;; € R
Am1  Gm2 - Gmn

is called a real matrix. The set of all such matrices is denoted by R *"™,
m is the number of rows, n is the number of columns of the matrix A.
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Basic operations

The addition, the subtraction and the (scalar) multiplication for matrices
are defined componentwisely, as for vectors.

Example:
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Exercise

(a) Calculate!

3 -2 5 1 0 -3
2-10 6 1 |-3- 1 3 4
5 1 -8 -2 0 0
(b) Find a matrix X such that the following equation is satisfied.
1 0 0 5 2 0
3-X+( 4 -2 4 |1 =X+ 4 0 -2

0 3 0 6 1 2
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Matrix-vector-product
Definition

Letamatrix A= [a; ... a,| € R™*™ and a vector

X = ( : > € R™ be given. Then the product A - x is defined as follows:

Tn

A -x:=ajz1+...+a,x, .

Example:
1 0 0 2 1 0 0 2
0 2 1 =1 =10]-24+(2|-(-)+([1]-3=11
4 1 0 3 4 1 0 7

» The number of columns of A must equal the number of components
of x.
» The product Ax is a linear combination of the columns of A.
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LES: Looking at functions
Goal: Solve LES Ax=b (A € R™*", b e R™)
Alternatively: consider function fa : R™ — R™ with
fa(x) = Ax

and solve fa(x) =b. The mentioned function is linear.

Linear function (Definition)

Let f: R™ — R™ be a function. We say that f is a linear function if the
following properties hold:

(+) For every x,y € R™

fx+y) = f(x)+£(y)-

(-) For every x € R™ and a € R:

fla-x) = a f(x).

Note: Linear functions map lines onto lines.
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Examples

We consider the map fa : R? — R?, fa(z) = A -2 with

o= (32)

25 /26



Examples

We consider the map fg : R> = R?, fg(z) = B2 with

- (1)
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Examples

We consider the map fc: R> = R?, fc(z) = C -z with

c—(43)

hc

25 /26



Geometric operations

Functions of the form x +— Ax can be used to describe geometric

operat

ions.

reflection across x-axis

-1 0 . .
( 0 0 reflection across xs-axis
a 0 .
(O a) stretching by factor a
CPS(Q) —sin(a) rotation by the angle o about the origin
sin(a)  cos(a)
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