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Inner product, norm and angle

Standard inner product (Defintion)

Consider any vectors

v =











v1

v2

...
vn











and w =











w1

w2

...
wn











in R
n. Then the (standard) inner product of v and w is defined as

follows:

⟨v,w⟩ := v1w1 + v2w2 + . . .+ vnwn =

n
∑

k=1

vkwk .

In particular, the length ∥v∥ of v (also called norm) can be written as
follows:

∥v∥ =

√

⟨v,v⟩ .
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Inner product, norm and angle

Length, distance, angle

Consider any v,w ∈ R
n, let ⟨·, ·⟩ be the standard inner product and let

∥ · ∥ denote the norm. Then

▶ ∥v∥ is the length of the vector v,

▶ ∥v −w∥ is the distance of v and w,

▶ the angle α between v and w is given by cos(α) = ⟨v,w⟩
∥v∥·∥w∥ .

u =





u1

u2





u1

u2

∥u∥2 = u
2

1
+ u

2

2

Pythagoras:

v

w

v-w















































Distance:
∥v-w∥

α

cos(α) = ⟨v,w⟩
∥v∥·∥w∥
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Inner product, norm and angle

Exercise: Consider v :=

(

2

1

)

and w :=

(

1

3

)

.

(a) Determine the lengths of these vectors.
(b) Determine the angle between v and w.
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Inner product, norm and angle

Exercise: Consider v :=

(

2

1

)

and w :=

(

1

3

)

.

(c) Extra problem: For which value x ∈ R is the distance between

ux :=

(

x

1− x

)

and v the smallest?
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Orthogonality

Orthogonality

Two vectors v,w in R
2 or R3 are orthogonal if and only if ⟨v,w⟩ = 0.

Example: Consider the vectors

v1 :=

(

1
2

)

, v2 :=

(

2
−2

)

and v3 :=

(

−4
2

)

.

Then ⟨v1,v2⟩ = −2 and ⟨v1,v3⟩ = 0. Hence, v1 and v3 are
orthogonal. But v1 and v2 are not orthogonal.

1

1

x1

x2

v1

v2

not
orthogonal

1

1

x1

x2

v1

orthogonal

v3
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Orthogonality

Orthogonality

Two vectors v,w in R
2 or R3 are orthogonal if and only if ⟨v,w⟩ = 0.

Exercise: Consider a triangle with the corner points A := (−1, 0, 1),
B := (1, 2, 3) and C := (−2, 2, 0).

(i) Determine the vectors which lead from A to B, from A to C and
from B to C.

(ii) Check whether the given triangle is right-angled.
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Cross product

Cross product (Definition)

Let v =





v1

v2

v3



 and w =





w1

w2

w3



 be vectors in R
3. Then the cross

product of v and w is defined as follows: v×w :=





v2w3 − v3w2

v3w1 − v1w3

v1w2 − v2w1



 .

Mnemonic

v1 w1

v2 w2

v3 w3

v1 w1

v2 w2

⇝ write the vectors next to each other and

below them add the first two components again

⇝ delete the first row

⇝ determine the entries of v×w using the drawn crosses:

v ×w =





v2w3 − v3w2

v3w1 − v1w3

v1w2 − v2w1




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Cross product

Cross product (Definition)

Let v =





v1

v2

v3



 and w =





w1

w2

w3



 be vectors in R
3. Then the cross

product of v and w is defined as follows: v×w :=





v2w3 − v3w2

v3w1 − v1w3

v1w2 − v2w1



 .

Important properties

(a) The cross product is only defined in R
3!!!

(b) The vector v ×w is orthogonal to v and w.

(c) The parallelogramm whose sides are given by v and w has an area
of size ∥v ×w∥ .

v

w
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Exercise

(a) Calculate





3

−2

1



×





0

3

−3





.
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Exercise

(b) Consider the vectors

v :=





1

2

1



 and w :=





−1

0

2





.

(i) Find a vector which is orthogonal to v and w.
(ii) Determine the area of the parallelogramm whose sides are given by

the vectors v and w.
(iii) Find a vector which is orthogonal to v and w, and the length of

which is 1.
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Representing planes: parameter form
Idea: A plane is determined uniquely if we know a point in the plane and

two vectors in the plane which have different directions.

x2

x1

x3

P

b

a

p

Every point in the plane E

can be reached from P

by walking along multiples of

the vector a and b.

Hence, every point in E

can be represented by a position

vector of the form p+λa+µb

Parameter form of a plane

Every plane in R
3 can be described in the following form:

E = {p+ λa+ µb : λ, µ ∈ R} = p+ Span(a,b),

where the points of E are represented by their position vectors. This

representation is called parameter form.
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Example
In R

3 there exists a unique plane E which contains the points
R := (1, 1, 1), S := (1, 3, 2) and T := (−1, 4, 3). We determine a
parameter form of E.

point in the plane: p =





1
1
1





R
S

T

(0, 0, 0)

a

b

p

vectors in the plane: a =





0
2
1



 and b =





−2
3
2





A parameter form of E is:

E =











1
1
1



+ λ





0
2
1



+ µ





−2
3
2



 : λ, µ ∈ R







=





1
1
1



+ Span









0
2
1



 ,





−2
3
2







 .
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Exercise

(a) Find a parameter form of the plane E which contains the following
points:

A := (6, 3, 0), B := (−3, 10, 2) and C := (5, 3, 3) .

(b) Find a parameter form of the plane F which contains the point
D := (9, 1, 9) and is parallel to the plane E.
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Representing planes: normal form
Idea: A plane E in R

3 is determined uniquely if we know a point in the
plane E and a vector (different from o) which is orthogonal to E.

x2

x1

x3

P

n

V
v − p

p

v

For every point V on E the

vector v-p between P and

V is orthogonal to n.

Let n be a vector that

is orthogonal to E.

Hence, it holds that ⟨v-p,n⟩ = 0

for every position vector v of a

point on E.

Normal form of a plane in R
3

Every plane E in R
3 can be described in the following form:

E =
{

v ∈ R
3
: ⟨v − p,n⟩ = 0

}

=
{

v ∈ R
3
: ⟨v,n⟩ = ⟨p,n⟩

}

.

Here, p represents any point of E. The vector n ̸= o is called normal
vector of E, i.e. it is orthogonal to E. This representation is called
normal form.
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Representing planes: coordinate form

Coordinate form of a plane

Every plane E in R
3 can be written in the form

E =

{

x =

(

x1

x2

x3

)

∈ R
3 : a1x1 + a2x2 + a3x3 = d

}

with a1, a2, a3, d ∈ R. This representation is called coordinate form.

The equation a1x1 + a2x2 + a3x3 = d describes which condition a point

(x1, x2, x3) must satisfy in order to part of the plane.

How to find a coordinate form

Let a plane E be given in normal form E =
{

v ∈ R
3 : ⟨v − p,n⟩ = 0

}

then a coordinate equation can be found as follows:

Set v =

(

x1

x2

x3

)

and rearrange ⟨v − p,n⟩ = 0 to get an equation of the

form a1x1 + a2x2 + a3x3 = d.
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Example
Example: In R

3 there exists a unique plane E which contains the points
R := (1, 1, 1), S := (1, 3, 2) and T := (−1, 4, 3).

We already know a parameter form of E:

E =











1

1

1



 + λ





0

2

1



 + µ





−2

3

2



 : λ, µ ∈ R







R
S

T

(0, 0, 0)

a

b

p

For a normal form of E we need a point p and a normal vector n.
(Hint: Use cross product!)

R
S

T

(0, 0, 0)

a

b

p

n

point: p =





1

1

1





normal vector: n =





0

2

1



 ×





−2

3

2



 =





1

−2

4





A normal form of E is:

E =







v ∈ R
3
:

〈

v −





1

1

1



 ,





1

−2

4





〉

= 0







.
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Example
Example: In R

3 there exists a unique plane E which contains the points

R := (1, 1, 1), S := (1, 3, 2) and T := (−1, 4, 3).

A normal form of E is:

E =

{

v ∈ R
3 :

〈

v −

(

1

1

1

)

,

(

1

−2

4

)〉

= 0

}

.

To obtain a coordinate form, we substitute

v =

(

x1

x2

x3

)

into the equation of the normal form:
〈(

x1

x2

x3

)

−

(

1

1

1

)

,

(

1

−2

4

)〉

= 0 ⇔ 1x1 − 2x2 + 4x3 = 3 .

Hence,

E =

{(

x1

x2

x3

)

∈ R
3 : x1 − 2x2 + 4x3 = 3

}

.
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Exercise

Find a coordinate form for each of the following planes:

(i) E1 :=







v ∈ R
3 :

〈

v −





2

0

1



 ,





0

1

2





〉

= 0







(ii) E2 :=











−1

1

0



+ λ





1

0

1



+ µ





0

−1

1



 : λ, µ ∈ R






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Overview: representations

parameter form:

E = {p+λa+µb: λ, µ ∈ R}

R
S

T

(0, 0, 0)

a

b

p

n

normal form:

E = {v∈ R3 : ⟨v-p,n⟩ = 0}

coordinate form:

E =

{(

x1

x2

x3

)

∈ R3 : a1x1 + a2x2 + a3x3 = d

}

n=a×b

(

a1

a2

a3

)

=n, d = ⟨p,n⟩
solution set of

a1x1 + a2x2 + a3x3 = d

R3

E
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Hesse normal form and distance

Hesse normal form (Definition)

A normal form
{

v ∈ R
3
: ⟨v − p,n⟩ = 0

}

of a plane is called Hesse
normal form if the length of n equals 1. (∥n∥ = 1)

Comment: A normal form can be transformed into a HNF by dividing the
given normal vector by its length.

Example: Consider the plane

E :=

{

v ∈ R
3
:

〈

v −
(

1

2

3

)

,

(

2

−2

1

)〉

= 0

}

.

The given representation is a normal form, but not a Hesse normal form,

since the normal vector n =

(

2

−2

1

)

has length ∥n∥ = 3. A normal vector

of length 1 is 1

3
n =

(

2/3
−2/3
1/3

)

. Hence, a Hesse normal form is

E =

{

v ∈ R
3
:

〈

v −
(

1

2

3

)

,

(

2/3
−2/3
1/3

)〉

= 0

}

.
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Hesse normal form and distance

Hesse normal form (Definition)

A normal form
{

v ∈ R
3 : ⟨v − p,n⟩ = 0

}

of a plane is called Hesse
normal form if the length of n equals 1. (∥n∥ = 1)

Distance point/plane

Let q be a point (position vector) and let E be a plane in
Hesse normal form E =

{

v ∈ R
3 : ⟨v − p,n⟩ = 0

}

then the distance
between q and E equals

|⟨q− p,n⟩| .

Exercise: Determine the distance between the point q :=

(

5

2

3

)

and the

plane E :=

{(

1

0

5

)

+ λ
(

0

0

1

)

+ µ
(

4

−3

2

)

: λ, µ ∈ R

}

.
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Positional relationship: line and plane

line intersects plane line and plane are parallel

line is contained in plane
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Positional relationship: line and plane

Scheme: Positional relationship between line and plane

Let a line g be given in parameter form

g = {p+ λa : λ ∈ R}

and let a plane E be given in coordinate form.

Then one may put the 3 components of the general vector p+ λa of the

line g into the equation of the coordinate form of E. This results in an

equation with variable λ for which there are three cases:

▶ the equation has no solution: then g and E have no common point.

▶ the equation has a unique solution λ: then there is an intersection

point. Its position vector can be determined by substituting the

solution λ into the general vector p+ λa.

▶ the equation has infinitely many solutions: g is contained in E.
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Positional relationship: line and plane
Example: We check whether the following line g and the following plane
E have an intersection point:

g =











2
−3
0



 + λ





1
−2
1



 : λ ∈ R







and E =











x1

x2

x3



 ∈ R
3
: 2x1 − x2 − 2x3 = 1







.

Solution: Every point of g has a position vector of the form




x1

x2

x3



 =





2
−3
0



 + λ





1
−2
1



 =





2 + λ

−3 − 2λ
0 + λ



 .

Such a point lies in E if and only if it satisfies 2x1 − x2 − 2x3 = 1; hence:

2 · (2 + λ)− (−3− 2λ)− 2 · (0 + λ) = 1.

This equation has a unique solution: λ = −3. Hence, there is an
intersection point. Its position vector is





2
−3
0



 + (−3)





1
−2
1



 =





−1
3
−3



 .

Hence, the intersection point is S = (−1, 3,−3).
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Positional relationship: line and plane

Exercise: Determine the positional relationship of the following plane E

and the following line g:

E :=











x1

x2

x3



 ∈ R
3
: 3x1 − 4x2 + 2x2 = 12







g :=











6

2

1



+ λ





4

5

10



 : λ ∈ R






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Positional relationship: two planes

planes intersect in a line planes are parallel

planes are identical
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Positional relationship: two planes

Scheme: positional relationship of two planes

Assume that two planes E1 and E2 are given by coordinate forms.
Then each common point (x1, x2, x3) must satisfy both coordinate
equations which leads to a LES of the form

a1x1 + a2x2 + a3x3 = d

b1x1 + b2x2 + b3x3 = e .

There are three cases:

▶ the LES has no solution: then E1 and E2 have no common point
(parallel).

▶ the LES has solutions, and both equations are not multiples of each
other: then there is an intersection line which equals the solution set
of the LES.

▶ the LES has solutions, and one equation is a multiple of the other
equation: then the planes are identical.

Exercises later
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Reminder: System of linear equations

System of linear equations

Let m,n ∈ N. A system of linear equations (LES) in the variables
x1, x2, . . . , xn is of the form

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2

...

am1x1 + am2x2 + . . .+ amnxn = bm

with aij and bi being (usually real) numbers. An assignment of values
for x1, . . . , xn such that all equations are satisfied is called a solution of
this system of equations. Such a solution is written as a vector.
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LES: Looking at rows

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2

...

am1x1 + am2x2 + . . .+ amnxn = bm

Equations describe
lines (R2),
planes (R3),
hyperplanes (Rn)
Solution set is
their intersection

R
3

R
2

solving LES =̂ finding intersection of hyperplanes
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LES: Looking at columns

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2

...

am1x1 + am2x2 + . . .+ amnxn = bm

⇓ rearrange




a11

a21

.

.

.
am1


x1 +




a12

a22

.

.

.
am2


x2 + . . .+




a1n

a2n

.

.

.
amn


xn =




b1

b2

.

.

.
bm




solving LES =̂ finding linear combination
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LES: Laziness







a11

a21

.

.

.
am1






x1 +







a12

a22

.

.

.
am2






x2 + . . .+







a1n

a2n

.

.

.
amn






xn =







b1
b2

.

.

.
bm







⇓ rearrange







a11 a12 · · · a1n

a21 a22 · · · a2n

.

.

.
. . .

.

.

.
am1 am2 · · · amn













x1

x2

.

.

.
xn






=







b1
b2

.

.

.
bm







Real matrix

Let m,n ∈ N. Then

A =







a11 a12 · · · a1n

a21 a22 · · · a2n

.

.

.
. . .

.

.

.
am1 am2 · · · amn






with every aij ∈ R

is called a real matrix. The set of all such matrices is denoted by R
m×n.

m is the number of rows, n is the number of columns of the matrix A.
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Basic operations

The addition, the subtraction and the (scalar) multiplication for matrices
are defined componentwisely, as for vectors.

Example:
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Exercise

(a) Calculate!

2 ·





3 −2 5

0 6 1

5 1 −8





− 3 ·





1 0 −3

1 3 4

−2 0 0





(b) Find a matrix X such that the following equation is satisfied.

3 ·X+





1 0 0

4 −2 4

0 3 0



 = X+





5 2 0

−4 0 −2

6 1 2




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Matrix-vector-product

Definition

Let a matrix A =





| |
a1 . . . an

| |



 ∈ R
m×n and a vector

x =

(

x1

.

.

.
xn

)

∈ R
n be given. Then the product A · x is defined as follows:

A · x := a1x1 + . . .+ anxn .

Example:






1
0
4

0
2
1

0
1
0






·





2

−1

3



 =





1
0
4



 · 2 +





0
2
1



 · (−1) +





0
1
0



 · 3 =





2
1
7





▶ The number of columns of A must equal the number of components

of x.
▶ The product Ax is a linear combination of the columns of A.
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LES: Looking at functions

Goal: Solve LES Ax = b (A ∈ R
m×n, b ∈ R

m)

Alternatively: consider function fA : Rn
→ R

m with

fA(x) = Ax

and solve fA(x) = b. The mentioned function is linear.

Linear function (Definition)

Let f : Rn
→ R

m be a function. We say that f is a linear function if the
following properties hold:

(+) For every x,y ∈ R
n:

f(x+y) = f(x)+f(y).

(·) For every x ∈ R
n and α ∈ R:

f(α · x) = α·f(x).

Note: Linear functions map lines onto lines.
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Examples

We consider the map fA : R2
→ R2, fA(x) = A · x with

A :=





3 0
0 2





1

1

1

1
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Examples

1

1

1

1

We consider the map fB : R2
→ R2, fB(x) = B · x with

B :=





1 2
1 0




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Examples

1

1

1

1

We consider the map fC : R2
→ R2, fC(x) = C · x with

C :=





1 2
−1 2





hC
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Geometric operations

Functions of the form x 7→ Ax can be used to describe geometric

operations.

(

1 0
0 −1

)

reflection across x1-axis
(

−1 0
0 0

)

reflection across x2-axis
(

a 0
0 a

)

stretching by factor a
(

cos(α) − sin(α)
sin(α) cos(α)

)

rotation by the angle α about the origin
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